ROS1融合突变和靶向药物
- H8 u$ a k1 b6 F& k s/ a! h: [+ ^ROS1融合突变和靶向药物8 L; e/ [5 _6 G' V4 v, r& Q
ROS1基因也是肺癌中经常被提及的基因突变,但是其突变频率并不是特别高。另外很多患者和家属没有分清楚ROS1的突变形式,很多不靠谱的基因测序公司,对于ROS1基因上一个位点的突变都解析是药物敏感突变,对患者的靶向用药产生了极大的干扰。本帖注重对ROS1的基因突变形式、对应的靶向药物做一次系统梳理。
' j6 O7 R$ ^& V5 h1
$ U: H6 t+ e6 W6 O4 j认识ROS1基因和其突变9 G: l( n2 j- } [: ^
ROS1基因的重排最开始是在人脑胶质瘤细胞系里被鉴定出来,后续在其他几个恶性肿瘤里也发现了ROS1基因的重排,如胆管癌、卵巢癌、胃癌和非小细胞肺癌,其中在非小细胞肺癌里的突变频率为1%-2%。ROS1基因可与多个基因发生融合突变,其中最主要的融合伴侣是CD74,(见下面图片),ROS1与其他基因发生融合时,一般会保留激酶结构域,而且在断裂点上较为保守。ROS1的重排导致激酶持续激活,上调SHP-1、SHP2以及PI3K、AKT、mTOR、MAPK和ERK信号通路,导致细胞持续增殖,肿瘤发生。
4 e, V0 T$ @4 i
, A# r, d$ ?; [5 d. g+ F
图1:非小细胞肺癌中ROS1基因的融合形式% M+ s4 S# E& q1 U9 D0 w3 ]# A4 L
上图是ROS1基因的融合形式,左侧的绿色部分为ROS1的酪氨酸激酶结构域,蓝色部分为跨膜结构域。右侧部分是报道的与ROS1发生融合变异的基因和其频率。由于存在多种基因可能与ROS1基因发生融合,因此在选择检测ROS1的变异时,需要着重技术原理,避免漏检。检测ROS1突变的技术有FISH(原位免疫荧光杂交)、RT-PCR(逆转录PCR)、IHC(免疫组化)和新一代测序(NGS)。目前FISH是ROS1融合的金标准,通过红色和绿色荧光探针标记ROS1基因两端,如果ROS1基因没有发生断裂,那么红绿荧光凑在一起表现为黄色荧光信号。如果ROS1基因中间发生了断裂,则可以观察到红色荧光、绿色荧光信号的分离,如果大于15%的肿瘤细胞呈现出这种分离信号,则判断为ROS1基因融合突变阳性。) s, |% h: D, G% D
! o" G$ B0 T3 P$ s# b- ?8 P
图2:FISH检测ROS1基因的重排
+ w/ V: o5 w. ?8 e9 t" Q- b, k 需要认识到任何检测技术都不是完美的,FISH的优势是可以检测石蜡切片组织(FFPE),这是RT-PCR不能具备的,RT-PCR对样本的RNA要求较高,需要新鲜的组织样本提取RNA才能进行逆转录。另外FISH还可以检测一些未知的融合突变,即不需要知道ROS1基因的融合伴侣是谁,只要ROS1发生分离了就行。缺点是手续繁琐、对试验员的操作要求较高。另外FIG基因在ROS1上游134kb处,因此FIG-ROS1的融合形式在荧光信号分离上不是很好判断。最关键的是FISH不能提供出和ROS1发生融合的伴侣基因是什么,是否有生物学和临床的意义。( v# z) x1 |0 `
RT-PCR因为需要之前设计引物,所以不能检测未知的融合突变形式。对样本的RNA要求较高,石蜡标本里RNA降解很严重。因此如果您的检测报告表明是RT-PCR检测的融合突变,而您的标本是石蜡标本,那么就需要注意是否存在假阴性的情况,不管是ALK或者ROS1以及RET都是这种情况。RT-PCR的优势是快速、样本需求量少。
5 `8 M% H# R" f: ?$ D( zROS1的免疫组化检测特点是简单,易操作。但是对抗体的要求较高,另外易受到染色背景、判读标准的影响,也有很多地方亟待提升。总之对于ROS1基因的融合突变,最好使用两种以上的检测技术进行相互验证,没有一项技术是可以做到100%的承诺的保证的,但是对于患者来说,漏检因为所有的希望。
7 K% f' ^$ N6 N- o/ F1 V& B" c6 w2
6 ]2 E b5 l9 lROS1的患者和病理特点
- \; `0 N f. b9 O3 J2 {: [ROS1融合突变是非小细胞肺癌的一个亚型(突变频率1%-2%),ROS1的患者群与ALK突变的患者拥有一些共同的特征,患者的特点是年轻、非吸烟、亚裔、进展较快。尽管ROS1融合突变也在肺大细胞癌、鳞状细胞癌里被鉴定出来过,但是ROS1主要是存在于肺腺癌中。
3 L1 t: ^- P0 R- `ROS1基因与其他驱动基因突变是不共存的,一项涵盖1073个样本的研究表明ROS1与EGFR、ALK等突变互斥,没有发现他们共同存在。一项涵盖556个患者的研究也表明,使用免疫组化IHC检测ALK和ROS1,没有发现二者共存。后续有报道研究两名ROS1阳性的患者发现了EGFR突变,分别是L858R和19号外显子缺失突变。但是这些为个别案例,总体上肿瘤的驱动基因都是互相排斥的,因为肿瘤也不需要两种驱动基因驱动其增殖。! Q5 O, T/ t& S, M5 {9 y1 r
3
$ {$ u( u% \! z+ c治疗ROS1阳性的克唑替尼
_7 \5 P3 I- R) \* v7 _9 G由于ROS1突变与ALK的相似性,研究者很容易想到使用ALK的抑制剂去尝试治疗ROS1的突变。2014年公布的临床研究数据表明,50名患者每日两次口服250mg克唑替尼,客观应答率(ORR)为72%,包含3例患者完全缓解(CR),33例患者部分缓解(PR)。相比ALK突变,ROS1患者使用克唑替尼的反应持续时间更长,达到17.6个月,中位无进展生存期(PFS)为19.2个月,因此专家推出克唑替尼对ROS-1的抑制要强于ALK,而且ROS1阳性突变的患者预后相对较好。
7 b* G- r. J8 ~4 `) r1 {美国FDA于2016年3月11日批准将克唑替尼用于治疗ROS1突变的转移性非小细胞肺癌患者。也是第一个FDA批准的ROS1阳性的靶向药物。但是克唑替尼治疗ROS1阳性的患者也不可避免为会产生耐药,这些耐药原因包含ROS1基因上的一些点突变,如G2032R、L2155S、L2026M、G2101A、K2003I、L1951R等。其中ROS1的G2101A、L2026M和G2032R的肿瘤细胞系对Foretinib敏感,但是L2155S对于Foretinib仍然耐药。G2032R和L2155S细胞系对TAE684也是不敏感的。除去这两个药物外,卡博替尼(XL184)展示出与部分耐药位点的疗效,如图3,ROS1阳性克唑替尼耐药后的L2026M、L1951R和G2032R可以被卡博替尼所解决,对于ROS1阳性的患者来说这算是一个好的事情,虽然这些是细胞系的研究,但是希望还是有的。这些需要着重注意,基因检测报告需要仔细查询是否有这些耐药位点,这些耐药位点的释义和相应的意义。
! z' o$ m9 q6 n& ]/ n
2 m% M4 T% A0 M! G2 H% S
图3:ROS1的G2032等突变对卡博替尼敏感
* H+ |, x0 Y; VROS1患者在克唑替尼使用的另一个耐药机制是EGFR的代偿性高表达(表达量为2.6倍),这个在肿瘤细胞系中获得了验证,同时使用EGFR的靶向药物吉非替尼或西妥昔单抗联合克唑替尼,可以起到协同抑制的作用(见图4)。
4 u9 D9 L+ ^4 o: I0 W
, Q5 ^: I5 _; X- H; b* B
图4:克唑替尼联合达克替尼或阿法替尼,可控制部分ROS1患者的耐药
! [6 V5 q+ c% M$ ]: M但是问题是,假如EGFR的高表达也确实是一部分ROS1患者的耐药原因,什么时候对患者进行检测呢,使用什么样本检测。检测的灵敏度和特异性如何?
; |5 \# _/ T3 K3 ]钙粘附蛋白E表达量丢失,波形蛋白和人纤维连接蛋白表达增加是另外一种ROS1阳性患者对克唑替尼耐药的原因。这导致细胞形态,以及细胞之间的粘附力出现改变。& ~6 U$ e: z5 @- \
F/ g+ @% a& f+ z
图5:一些蛋白表达降低或升高也影响ROS1患者对克唑替尼的敏感性
# i/ ?9 T9 B, C9 U另外也有文献报道KRAS、NRAS等也对ROS1阳性的患者使用克唑替尼耐药,从肿瘤细胞的进化考虑,ROS1对克唑替尼的耐药原因会是比较复杂的,也比较难以预测。因此究竟是什么原因耐药,一定要彻底进行检测明确。推荐什么类型的靶向药物,必须有一定的文献或临床数据支持。
( }5 k7 I' r7 s, k" o" Y4
& v+ \$ o' J8 V) z& W/ f1 k& W4 ~其他ROS1融合阳性的靶向药物
! V& I9 Y, r& ?5 g. WALK和ROS1的激酶活性区域有70%的相似性,因此ALK的抑制剂很多是可以用于ROS1的治疗的,克唑替尼这个药物也就是这么误打误撞地搞出来的。其他的ALK抑制剂是否也可以呢?答案是有抑制效果但不都是。
H1 I' j6 q7 h0 @9 i4 G
0 O) z+ Z: H4 y: s1 g- W
图6:ALK抑制剂对ROS1-CD74融合基因的抑制情况& i# v" s/ T# M
在图1上我们可以知道CD74是ROS1的主要融合伴侣基因,所以表达该融合基因的细胞系被用来测试ALK的抑制剂。从图6我们可以看出,克唑替尼、色瑞替尼(LDK378)、AP26113对ROS1-CD74的抑制效果很不错。ASP3026具有中度的抑制效果,艾乐替尼(CH5424802)没有显示出具有抑制活性,这个是为主要注意的,因为艾乐替尼在ALK中和克唑替尼的头对头临床试验效果很好,但是这并不能完全复制到ROS1阳性的患者上,最起码不能复制到CD74-ROS1的融合突变的患者上。+ h" X0 C- [' J7 }; v1 r
很多病友都熟悉3922这个ALK抑制剂,有资料称这个药物对于ROS1的抑制力度比克唑替尼强几十倍。我们查询了很多的文献,终于找到了一篇3922对ROS1的报道,给大家呈上。1 t" `4 z! l! o* v
$ R* b! `+ N+ z6 u2 _" Y/ O/ w* e图7:不同ALK抑制剂对ROS1的抑制活性,3922最优8 P5 T4 U7 }- H) F
从图7中我们可以再次了解ALK抑制剂对ROS1突变的抑制活性,其实3922可以说是一骑绝尘。当然在这里我们再一次看到艾乐替尼对ROS1抑制不力,这个是需要着重注意的,不是所有的ALK抑制剂对ROS1都能起到好的抑制效果。# A4 _+ s! I& F* [
对于ROS1突变导致的克唑替尼耐药,体外实验表明3922可以ROS1基因上的G2032R突变、G2026M突变具有抑制效果。在动物模型的体内实验上,3922对于FIG-ROS1、CD74-ROS1和存在G2032R耐药突变的CD74-ROS1都具有抑制活性。另外对于FIG-ROS1阳性胶质母细胞瘤的老鼠上也展示出抑制效果。这里需要注意ROS1有多个耐药突变,目前报道的是其中两种是可以用3922控制的,当然这是动物实验,后续仍需要进行跟踪了解。
& r6 k! _" |# j7 ^我们就本帖进行一次重点总结:( Y- p, j. j6 i* T; J u4 C; ^
ROS1的突变频率不是很高,在非小细胞肺癌里的频率仅为2%左右,但是目前有靶向药物克唑替尼批准。需要明确的是ROS1的突变形式是与其他基因发生融合。但是ROS1本身会产生一些耐药突变对克唑替尼耐药,这些耐药位点可以被其他靶向药物所解决,如卡博替尼、3922等。目前ROS1在其他癌种也有发现,但是跨癌种用药的疗效如果目前没有较为全面的报道,有胶质母细胞瘤脑的ROS1阳性老鼠对3922敏感。其他癌种如果检测出来ROS1阳性,且没有获准的靶向药物,跨癌种用药也是可以考虑的。
( l- W( W7 Z9 N小编的重要总结- T) i: i4 X* _
+ U# I% g- m: R. j# T参考文献:( x, `- w# u* w) {6 L! y) ?- B3 v. l
1、Kurtis D. Davies, et al., Clin Cancer Res. 2013 August 1; 19(15): 4040–4045.
) @2 T5 e% [$ h5 J4 `$ y2、Gainor JF, et al., Oncologist. 2013;18(7):865-75.
: Z S# r0 c# z" m$ }- @3、Song A,et al.,Clin. Cancer Res. 21, 2379–2387(2015).$ d( H8 ~" z, @0 f. T3 p \
4、Katayama R, et al.,Clin Cancer Res. 2015 Jan 1;21(1):166-74
9 t* P" u6 A, S5、Zou HY, et al., Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3493-8. |